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TEMPERATURE FIELD IN PLATES AND FLAT SHELLS WITH INTERNAL HEAT
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Solutions of the problem of heat conduction with boundary conditions
of the first, second, and third kinds are obtained for an infinite plate
exposed (o one of the following influences: instantaneous point heat
source, initial temperature concentrated at a point, or instantaneous
point action of a medium at its surface.

Green's functions of the problem of heat conduction
for plates and flat shells. Let a homogeneous isotropic
plate be heated by internal heat sources. The tempera-
ture at any point of the plate is given by the equation
[1]
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and the boundary conditions
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az—a—g—}—bzﬂz%(a, B, ) at y=1
dy
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Equation (1) is also applicable to thin-walled flat
shells [2].

We will find the distribution of temperature 6* in
the plate when the functions ¥i are given in the form
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We represent 6(8 — ') in series form:
a1 X
s6—8)=— Y
n

m=0

gncosm(p— 37,

and, correspondingly, write

g% = L E £n87, cos m (B —p’). (3)
“ m=0
The coefficients G*r‘n satisfy the equation
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and the boundary conditions

a0 . 8@ —ay)
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To solve Eq. {4) we use Doetsch integral transforms
[3] with respect to the variable v and Hankel trans-~
forms with respect to . We denote the double trans-
form of 0} by @y, i.e.,

@ 1
Opn = | alnwa)da | 672, (w)dy,
where ’ ’

Zn (Y) = Au cos p,y + B,, sin BwaY
are solutions of the problem
Za(y) + paZ, () =0 6)
with the following boundary conditions:
— & Zy(0) + b:Z, (0) = 05
,Zn (1) + b,Z, (1) = 0. (7)

The determinant of system (7), equated to zero,
gives the characteristic equation for finding the eigen-
values p2:

tg n, = Uy (2 + bya)Aaya, p2 — bby). (8)

Investigation shows that the problem does not have
zero eigenvalues /“‘1?1 = 0, except for the case of by =
=hy= 0.

We find the coefficients Ay and By, from (7) and also
from the normalization condition

1
{Zwdy=1.
0

After evaluation we obtain

Bi =
2b7 (a3 pk + ) _
(a% p‘: + b%) (ag }Lf, + b3 + (@ya, p2 + byby) (@oby + bya)
A,,:—qibp—" B, for n>1;
1
B,=0;

{1 at b, =b,=10;
Ay =
0 otherwise.
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Multiplying expression (4) and the last of Egs. ()
by the kernel of the transform and then integrating
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Fig. 1. Distribution of temperature

field over thickness of plate: 1) at
7= 0.01; 2) 0.05;3) 0.1; 4) 0.5; 5) =,

within the corresponding limits, we have

2

de,, S

= ) O = 2 6 00) Zo (v) i () 8 (%),
i==0

Opn (0) = J o (wosy Z, (V5)- 9)
Here, we have taken into account the fact that
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The solution of Eq. (9) will be
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The inverse transformation gives
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Using the formula for the addition of cylindrical
functions, we sum §* , in accordance with (3), and
after integration obtain
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Results (11) can be used in an arbitrary coordinate
system on the surface of the plate ¢y = 0), if it is kept
in'mind that R is the distance between the center of
action and the instantaneous point. In particular, in
a Cartesian coordinate system Rj = [ (x — xi)2 +(y -

- )it/

Each individual solution G, gives the temperature
field in the plate due to just one factor: concentrated
instantaneous heat source (i = 0), concentrated instan-
taneous action of the medium at the surfaces of the
plate (i = 1,2), concentrated action of the initial tem-
perature (i = 3).

Solutions (11) may be regarded as Green's functions
of the problem (1), (2), which can be used to solve that
problem for an arbitrary distribution of heat source
intensity and arbitrary boundary conditions given by
the functions y;:
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We note that result (12) can be obtained mathematically
from Eg. (1) for homogeneous boundary conditions (2)
if the heat source intensity is given by a specific func-
tion, i.e.,

20
5, =% by, T+
T .

2
+_2_‘1 Gl By DG —v) + 8(D)Ps (e, By V)

—alg_9+ble=o at y=0;
¥

20

a, W+bze=0 at y=1;

6, B, v, 1)=0 at 7=0.

Consequently, problem (1), (2) reduces to the prob-
lem with homogeneous boundary conditions. This re-
sult can be formulated as follows: the action of the
medium on the plate is equivalent to heat sources (if
a; # 0) or dipoles (f g5 = 0) distributed over the sur~
faces of the plate, and the action of the initial tempera-
tureis equivalentto instantaneous heat sources acting at
the initial instant inside the plate. This conclusion was
reached in [4]in the case of the one-dimensional problem
with boundary conditions of the first kind (g5 = 0).

Our method employing Doetsch integral transforms
gives the solution in the form of series in eigenfunc-
tions, these series converging absolutely and uni-
formly in all closed regions on the interval (0,1).

The constants ay, aj by, byin boundary conditions
(2) may take arbitrary nonnegative values, i.e., ex-
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pression (12) may give a solution of Eq. (1) for bound-
ary conditions of the first, second, or third kind on
each of the boundary surfaces. If we take i = 0 in (11)
and consider the cases a;= a3=0, b;=b,=0and g,=
= ay by = b, we obtain the known [5] solutions for in-
stantaneous point heat sources.

Integrating (11) with respect to g from 0 to 27, we
obtain the Green's function of the axisymmetric prob-

lem
I o +of
G; (@, 0, 1) = 5 exp (_ 4t )X
X I, ( 0;? ) }:1‘ G (V) Zn (V) Zn (V) €XP (— 5 ).

In the particular case of i=landa;=a3 =1, by =
= b, = 0, this formula coincides with that given in [9].
Axisymmetric problem. Normal distribution of heat
gsource intensity. We will consider the problem ofde-
termining the temperature field in a plate that is heated
by heat sources with an intensity given with respect to
the o coordinate by a Gaussian distribution law, i.e.,

Yo (& V) = @ (Y) exp (— a?/4K%). 13)

We assume that the form of the boundary conditions
is arbitrary, but for simplicity consider that the func-

tions ¥, and ¥, characterizing the action of the medium

on the surfaces of the plate, are constant and that be-
fore the process begins the corresponding stationary
regime has been established, i.e.,

Yy, = const, 1, = const,
Psla, B, ¥) =0 (V) =

_ W [, (1 —v)+-as) 4 P2 (b, v - ) )
biby + agby - byay

Now, using Eq. (12), we obtain

0—8,(v) =4 ¥ Z,(¥) () exp (u24?) x
n=0 !

< | (—2",; unk)~J1(—f——, wVW)}, (14)
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Here, J,(x,y) denotes the integral

@
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Expanding exp (—x 2/u) in the integrand in series, we
can represent the function J,(x,y) in the form

e

e = N = B as)
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¢ d
The functions E,_,, , (4% = Yexp (— yu) nl:m were tab-

. u
ulated in [6]. !
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At large values of x, when series (15) converges
slowly, by using the asymptotic expansion of Ep 4y (v9
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Fig. 2. Temperature distribution at
surface of plate: 1-5) see Fig. 1.

[6] we can obtain the following formulas for computing
Ja®,y) {n=0,1):

2
T, g) =2 §K1(2xy)—ﬂ’—(—x—y—)x

o
x[l’i‘ y2;2 + y4,_?§2+6 +O(x—“)];
Iy (2, y) = 2K, (2 xy) — %g;f)_ 5
R e Ik

We have calculated the temperature field in a plate
from Eq. (14) for the case when at one surface (y = 0)
we are given heat exchange with a medium at tempera-
ture 6, characterized by the Biot number b, = el/A =1,
and at the other (y = 1)thetemperature §;,. Consequently,
by=by=a;=1, ay=0, ¥;= 3= 3 = 6. The law of
variation of heat source intensity over the thickness
of the plate is exponential, i.e., @(y) = Vexp (=77),
and the coefficient k in (13) is taken equal to 0.5.

Figure 1 shows the distribution of the temperature
field over the thickness of the plate at the center of
heating (o = 0), and Fig. 2 the temperature distribu-
tion at the surface of the plate (y = 0). We note that
the variation of temperature along the radius of the
plate is much smoother than the distribution of heat
source intensity.

The problem considered corresponds roughly to
the action of a beam of penetrating radiation (particle
flux) normal to the surface of the plate, when the
radiation intensity in the beam varies according to a
normal law [7] and the heat release in the interior of
the plate is determined by the function ).

Uniform circular distribution of heat source inten-
sity. When the beam of radiation is strongly concen-
trated it is more rational to consider that the intensity
of the sources is uniformly distributed over a circle
of radius a [9]:

Polat, ) = {;P(Y) at o <a,

16
at a> a. a6)

Assuming that the boundary conditions remain as
before, and applying formula (12), we obtain

8@, v, ) —6(y) = )
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xS P(a, 7', a)exp (~£'M§T')) d—T (17)
¥ H T (cont'd)

where the integral

a
. 2 ,
P, ', a)= | ayexp — o 1 ﬂ) da,
41’ 2,
0

is called the P function. A table of values of this func-
tion is given in [8].
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Fig. 3. Calculation of temperature
field of plate: 1~5) see Fig. 1. .

Ag T — =, expression (17) can be simplified:
0, ¥, ) — 08 (v) = 3, Za(y) @ (1) X
n=0

xﬂirmixmmmmmbm—m+
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at @ =0, when P(0,7",a) = 271 [1 — exp (—a2/4'r')],
B0, v, D —0,(y) =

o 2 .
=Zawamﬁiﬂ§ﬂi~fmwm+
n=0 p'n "
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Equation (18) was used to calculate the temperature
field of a plate. The numerical data were taken from
the previous problem and the radius ¢ was taken equal
to 2k, starting from the condition that the amount of
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heat released in the plate is the same for distributions
(13) and (16). The results of the calculation are pre-
sented in Fig. 3.

As may be seen from the graphs, the temperature
at the center of heating for a uniform circular dis-
tribution of heat source intensity is somewhat greater
than for a normal distribution. The shape of the tem~
perature distribution curves is roughly the same in
both cases: they have a more or less clearly expressed
maximum whose height and location vary with 7.

We note that similar problems for nonpenetrating
radiation (i.e., in the absence of internal heat sources)
were investigated by Sticker [9].

NOTATION

0 is the temperature, §; is initial temperature; r, ¢,
and z are the-cylindrical coordinates; a = v/I, g =
= ¢,y = z/] are the dimensionless coordinates; / is
the thickness of plate; 7 =nt/] 2 is the Fourier number;
t is time; % is thermal diffusivity; A is thermal con-
ductivity; ¢ is the heattransfer coefficient; ¥ {a,8.y,7) =
= (B/MW@B,r,7); V= NW; W(eg, v, 7 is heat
source intensity; Ep{y) is the integroexponential func-
tion; 6x ~ x;) is the Dirac function; A is the Laplace
operator incoordinates «,8,v; Jp(x)is the Bessel func~
tion; In(x) and K, (x) are modified Bessel functions;

0.5, m=20 ) 1, a>a
B = : 7 — =
" ‘{1, m>1, (2 —a {0,a<a.
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